Early pregnancy anomaly scan (EPAS)

Dr Fred Ushakov

Fetal Medicine Unit University College London Hospital (UCLH), UK

1st trimester: Structural development of the fetus & early detection of anomalies

Dr Fred Ushakov Fetal Medicine Unit University College London Hospital

Clinical / Research / Training Interest

- ✓ Early Pregnancy Anomaly Scan (11-13 wks)
 - Echocardiography
 - Neurosonography
 - Early detection of spina bifida
 - · Face, skeleton, kidneys....
- ✓ Screening Fetal Echocardiography
- ✓ Medical use of 3D / 4D
 - Face
 - Brain
 - Syndromes...

fetalechocardiography.com

fetalechocardiodraphy.com

London School of Ultrasound

Early Fetal Echocardiography at 11-13 weeks

11th November 2017

Early Fetal Neurosonography at 11-13 weeks

10th March 2018

Fetus at 11-13 weeks

- Majority of severe anomalies are already present
- Appropriate dimensions to TVS scanning
- Mobile fetus
 - ✓ spontaneous movement
 - √ +/-manipulations
- Relatively large amount of amniotic fluid
- Incomplete ossification

The instruments: use of different transducers

- It is important to know your scanner and pros and cons of every transducer
- Different transducers can be used during examination in order to get best available quality of imaging

Different transducers: quality of the image is difficult to predict without trying

Similar quality and resolution of the image

Matrix 6 MHz TA probe

9 MHz TV probe

Linear 9 MHz TA probe

Different structures visible better by different probes

Fred Ushakov @ 2017

Advantages of combined approaches: angle

Transabdominal vs transvaginal: angle of scanning

TAS: Sagittal view

Retroverted uterus: indication for TVS examination

TAS

TVS

Fred Ushakov © 2017

11-13 weeks TAS basic anomaly scan

PRENATAL DIAGNOSIS

~ 45,000 pregnant women

Prenat Diagn 2011; 31: 90-102.

Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pd.2642

Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks

Argyro Syngelaki^{1,2,3}, Teodora Chelemen^{1,2}, Themistoklis Dagklis¹, Lindsey Allan¹ and Kypros H. Nicolaides^{1,2,3}€

¹Harris Birthright Research Centre of Fetal Medicine, King's College Hospital, London, UK

²Department of Fetal Medicine, Medway Maritime Hospital, Gillingham, UK

³Department of Fetal Medicine, University College Hospital, London, UK

NHS Fetal Anomaly Screening Programme

18⁺⁰ to 20⁺⁶ Weeks Fetal Anomaly Scan National Standards and Guidance for England

England are:		11-13 wk detection rate (%
		Syngelaki et al 2011
Anencephaly	98	100
Open spina bifida	90	14
Cleft lip	75	5
Diaphragmatic hemia	60	50
Gastroschisis	98	100
Exomphalos	80	100
Serious cardiac abnormalities	50	26
Bilateral renal agenesis	84	0
Lethal skeletal dysplasia	60	50
Edwards' syndrome (Trisomy 18)	95	90
Patau's syndrome (Trisomy 13)	95	95

Anomalies detection rate at 11-13 wk Syngelaki et al 2011

100% detection

- body stalk anomaly
- anencephaly
- alobar holoprosencephaly
- exomphalos
- gastroschisis
- megacystis

Potentially detectable

- posterior fossa defects
- spina bifida: ~100%
- facial cleft
- cardiac defects
- renal defects
- absent hands / feet

0% detection

- microcephaly
- agenesis of the corpus callosum
- ventriculomegaly
- fetal tumors
- echogenic lung lesions

- +
- diapragmatic hernia
- encephalocele
- lethal skeletal
- dysplasias hemivertebra

- amniotic band syndrome
- · lethal arthrogryposis
- · bladder exstrophy
- cloacal anomaly
- anal atresia
- many other...

Fred Ushakov © 2017

ISUOG: 2013

Ultrasound Obstet Gynecol 2013; 41: 102-113

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.12342

ISUOG Practice Guidelines: performance of first-trimester fetal ultrasound scan

GUIDELINES

Early pregnancy anomaly scan

11-13+6 wks

Organ/anatomical area	Present and/or normal t
Head	Present
	Cranial bones
	Midline falx
	Choroid-plexus-filled ventricles
Neck	Normal appearance
	Nuchal translucency thickness (if accepted after informed consent and
	trained/certified operator available)*
Face	Eyes with lens*
	Nasal bone*
	Normal profile/mandible*
	Intact lips*
Spine	Vertebrae (longitudinal and axial)*
Ph. Inc.	Intact overlying skin*
Chest	Symmetrical lung fields
	No effusions or masses
Heart	Cardiac regular activity
	Four symmetrical chambers*
Abdomen	Stomach present in left upper quadrant Bladder*
	Kidneys*
Abdominal wall	Normal cord insertion
	No umbilical defects
Extremities	Four limbs each with three segments
	Hands and feet with normal orientation*
Placenta	Size and texture
Cord	Three-vessel cord*

^{*}Optional structures. Modified from Fong et al.²⁸, McAuliffe et al.⁸⁷, Taipale et al.⁶⁰ and von Kaisenberg et al.⁵⁸.

20 wks

Head	Intact cranium Cavum septi pellucidi Midline falx Thalami Cereberal ventricles Cerebellum Cisterna magna
Face	Both orbits present Median facual profile* Mouth present Upper lip intact
Neck	Absence of masses (e.g. cystic hygroma)
Chest/Heart	Normal appearing shape/size of chest and hung Heart activity present Four-chamber view of heart in normal position Aortic and pulmonary outflow tracts* No evidence of diaphragmatic hernia
Abdomen	Stomach in normal position Bowel not dilated Both kidneys present Cord insertion site
Skeletal	No spinal defects or masses (transverse and sagittal views) Arms and hands present, normal relationships Legs and feet present, normal relationships
Placenta	Position No masses present Accessory lobe
Umbilical cord	Three-vessel coed*
Genitalia	Male or female*

^{*}Optional component of checklist; can be evaluated if technically feasible.

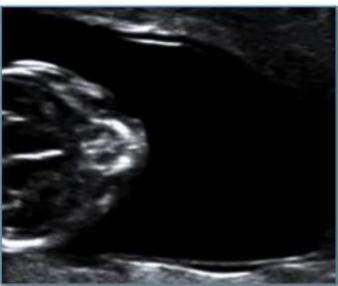
CRL: pregnancy dating

Brain: transverse sweep

Transvaginal (TVS)

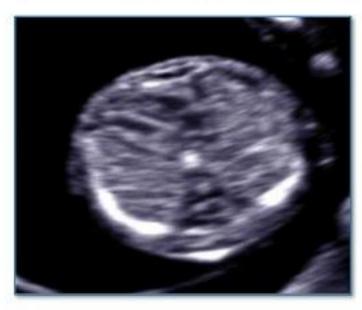
High frequency probe

Fetal profile (midsagittal plane)



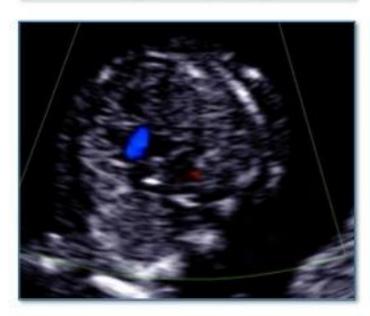
Face: transverse sweep

Face: transverse sweep




Heart: septal view

Heart: apical view



Heart: colour Doppler

Transvaginal (TVS)

High frequency probe

Spine

Transvaginal (TVS)

High frequency probe

Stomach

Diaphragm

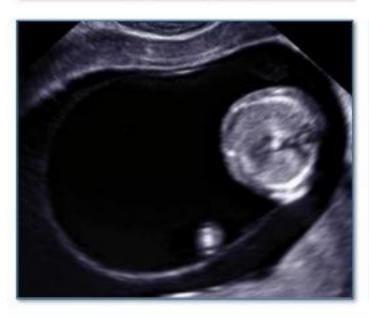
Transvaginal (TVS)

High frequency probe

Fred Ushakov © 2017

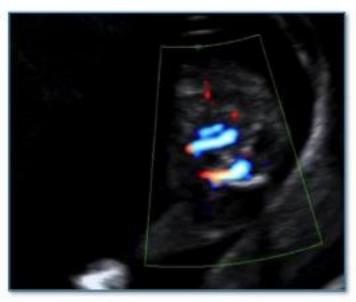
Kidneys

Transvaginal (TVS)



High frequency probe

Umbilical cord insertion



Bladder and umbilical arteries

'No flow' if the vessel is 90° to US beam

HD flow, PRF = 0.9 kHz

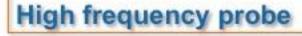
False single umbilical artery

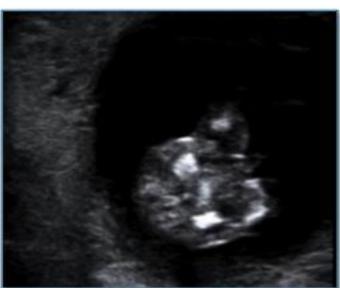
Two UA after angle correction

Fred Ushakov © 2017

Upper extremities

Hands

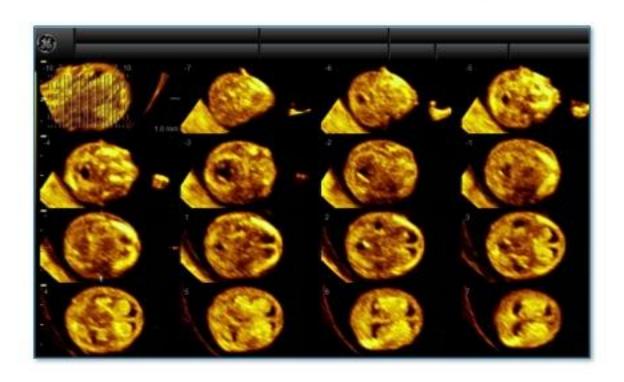

Transvaginal (TVS)


High frequency probe

Lower extremities



Lower extremities


Feet

How to do 3D neurosonography at 11 wks

Fred Ushakov

CRL = 33.7 mm (10+1wk) 'hydropic baby'

Referred to FMU (scan in 7 days)

FMU: 11 wks → no 'hydrops' # ?spina bifida

CRL = 45.4 mm

?No intracaranial translucency (IT) ?Brainstem

FMU: 11 wks → no 'hydrops' # ?spina bifida

How to check the brain at 11 wks (CRL=45.4 mm)?

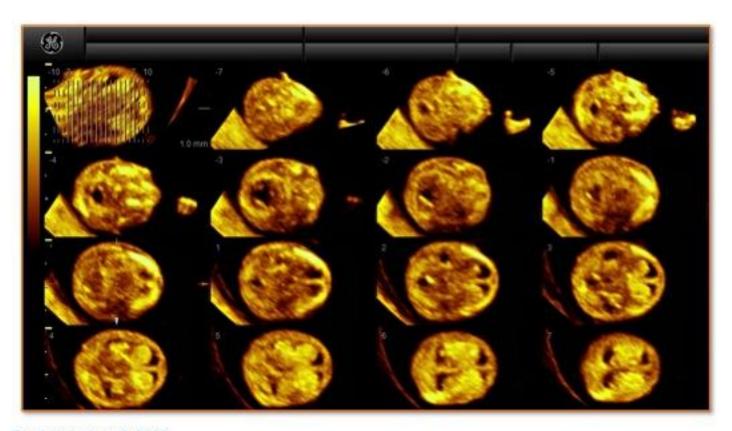
It is easy to exclude serious CHD at 11 wks by TAS

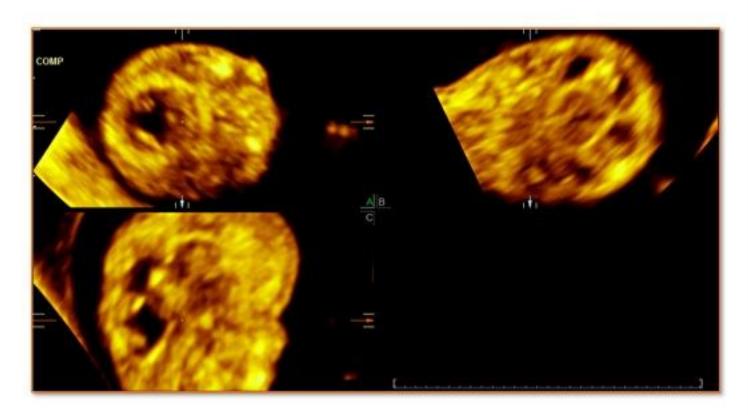
TVS → to check brain → baby 'stands' on its head

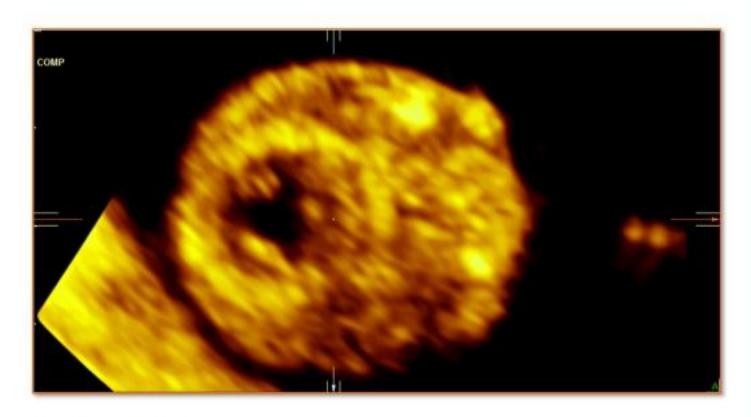

TVS → to check brain → baby 'stands' on its head

3D neurosonography: ROI (region of interest)

3D neurosonography: multiplanar mode

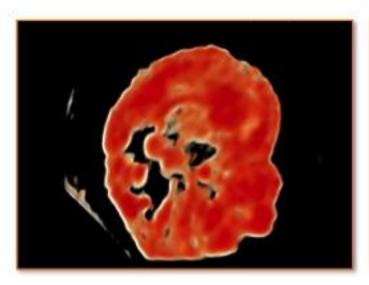

3D neurosonography: surface rendering


3D neurosonography: surface rendering


3D neurosonography: TUI

'Store and scroll' technique

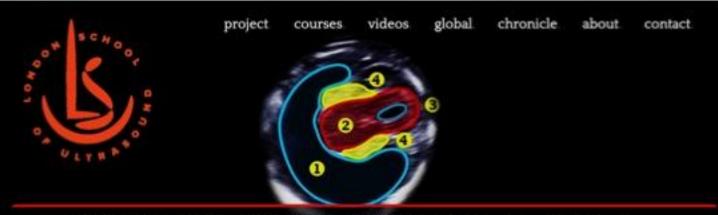
'Store and scroll' technique


3D mid-sagittal reconstruction ('C' plane)

3D mid-sagittal reconstruction ('C' plane)

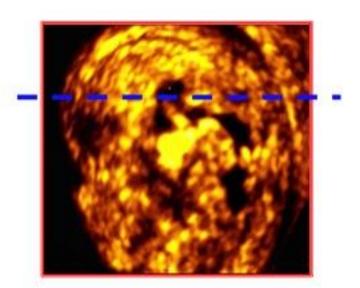
HDlive Surface rendering

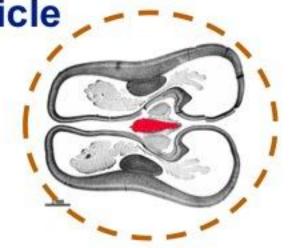
Surface rendering



3D sononeuroembryology

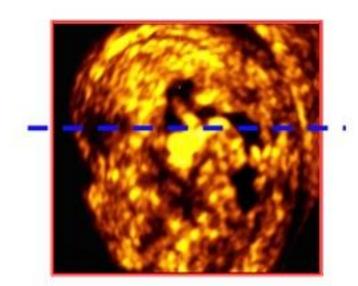
fetalechocardiodraphy.com

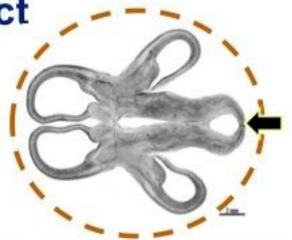

EARLY NEUROSONOGRAPHY: BRAIN, SPINE AND FACE AT 11-13 WEEKS

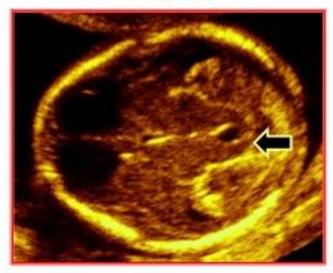

Early Fetal Neurosonography at 11-13 weeks

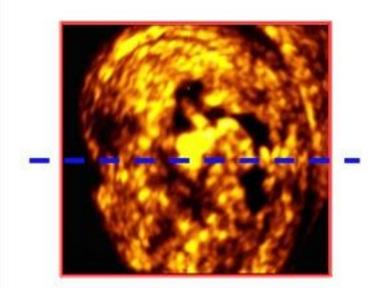
10th March 2018

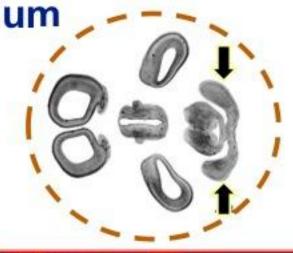
Normal brain: 3rd ventricle


Roof of the 3rd ventricle

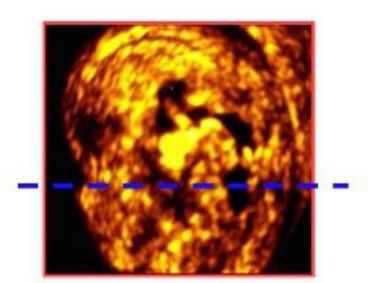


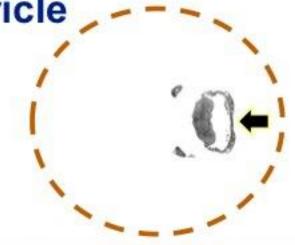



Normal brain: Aqueduct



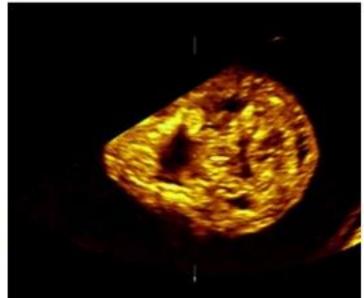
Normal brain: Cerebellum





Normal brain: 4th ventricle

Lateral Pool of Rhombencephalic Superventricle



New in 11-13wk neurosonography

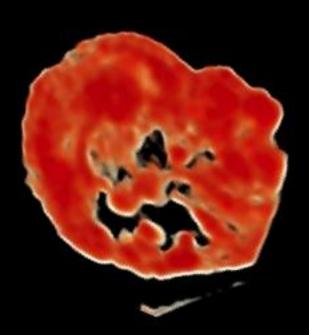
Midsagittal (NT) view -TAS

3D "Store & Scroll" - TVS

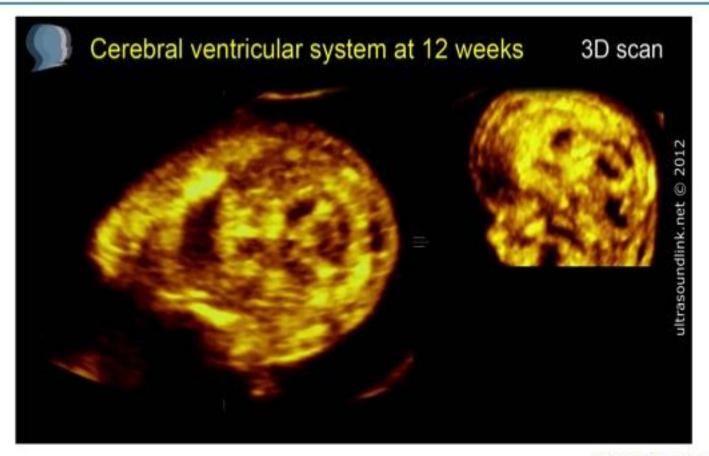
New in 11-13wk neurosonography

Midsagittal view - X-rays

3D "Store & Scroll" - CT



Please learn how to perform 3D neurosonography @



3D Neurosonography 11-13 weeks

Common and/or important anomalies at 11-13 wks

- · CNS
 - ✓ Acrania
 - √ Holoprosencephaly
 - ✓ Spina bifida
- Heart
 - Transposition of the great arteries (TGA)
 - ✓ Tetralogy of Fallot (TOF)
 - Atrioventricular septal defect (AVSD)
 - Hypoplastic left heart syndrome (HLHS)
- Cystic hygroma

- Chest
 - Congenital diaphragmatic hernia (CDH)
- Abdomen
 - ✓ Body stalk anomaly
 - ✓ Omphalocele
 - ✓ Gastroschisis
 - Renal
 - ✓ Megacystis
- Exteremities
 - √ Polydactyly
 - Transverse defects
- Early fetal growth retardation (FGR)

Acrania – thought to be NTD

"Milky" amniotic luid

Absent cranium, disintegration of the brain structures

Alobar holoprosencephaly (HPE)

12 wks (trisomy 13)

Sagittal view

Axial view

Holoprosencephaly prevalence

Study group	Prevalence	Source
Conceptuses	1:250	Matsunaga E, Shiota K, 1977
11-13 wks scan	1:1300	Kagan K, et al, 2010
Birth	1:8000 live births	Leoncini E, et al, 2008

Majority of embryos/fetuses with HPE die in utero or TOP

Holoprosencephaly at 11-13 wks: Diagnosis & outcome

Ultrasound Obstet Gynecol 2010; 36: 10-14
Published online 16 June 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/uog.7646

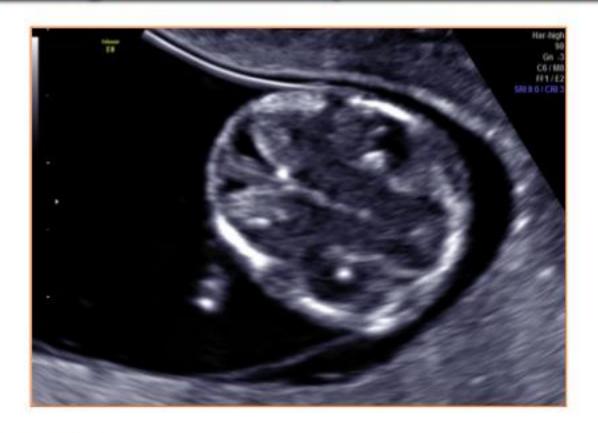
2010

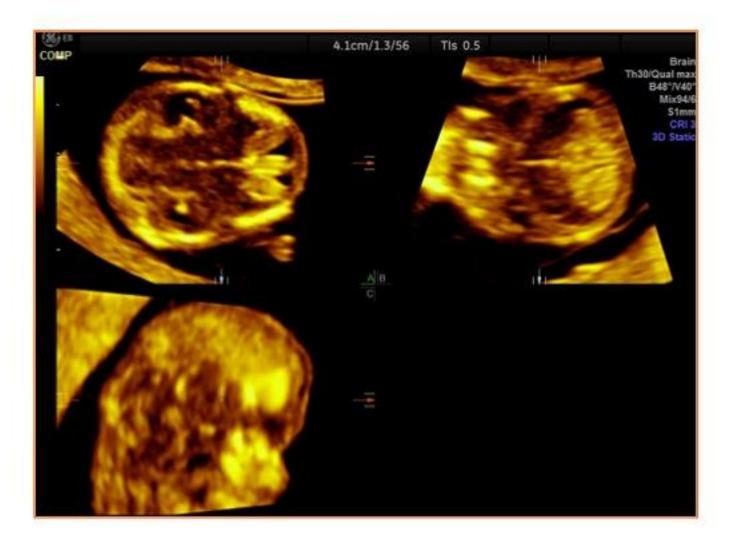
The 11-13-week scan: diagnosis and outcome of holoprosencephaly, exomphalos and megacystis

K. O. KAGAN*†, I. STABOULIDOU*, A. SYNGELAKI*, J. CRUZ*‡ and K. H. NICOLAIDES*‡

- prospective screening
- 57,199 pregnancies
- 11+0 to 13+6 wks
- · TAS
- Prevalence of HPE
 1:1298

Chromosomal anomalies:


65.9%


- Trisomy 13 86%
- √ Triploidy 6%
- √ Trisomy18 4%

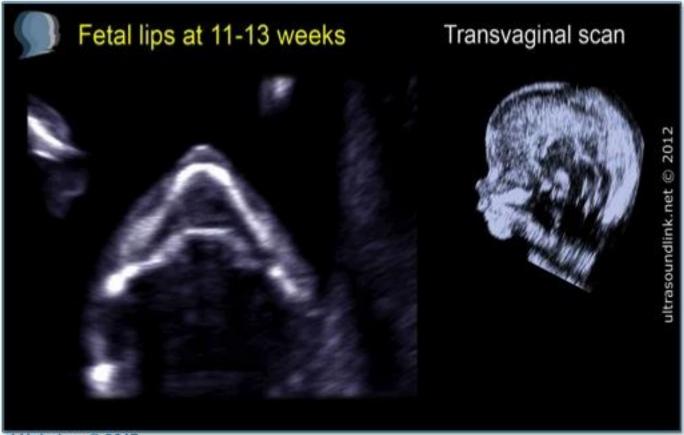
Diagnosis of spna bifida at 11-13 wks

Crash sign and dried-up brain: 11 wks

Spina bifida confirmation (follow-up at 13 wks)

Lumbo-sacral meningomyelocele

How to check the lips: transverse sweep

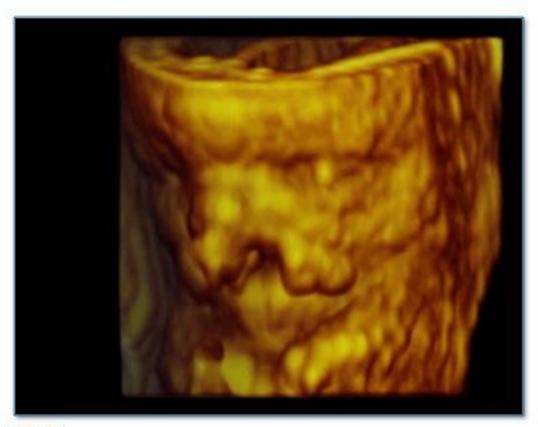


Technique of scanning

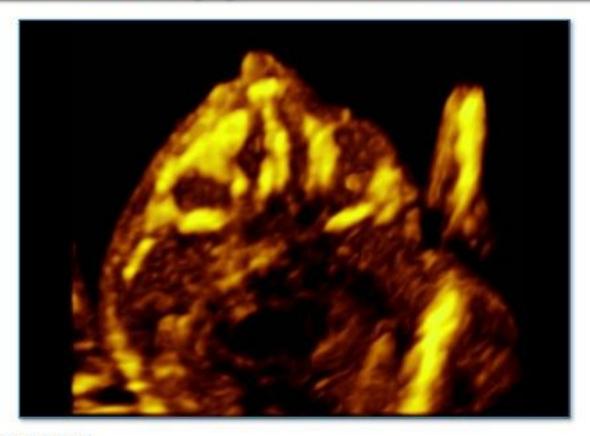
3D image of the fetal face at 12 weeks

ultrasoundlink.net © 2012

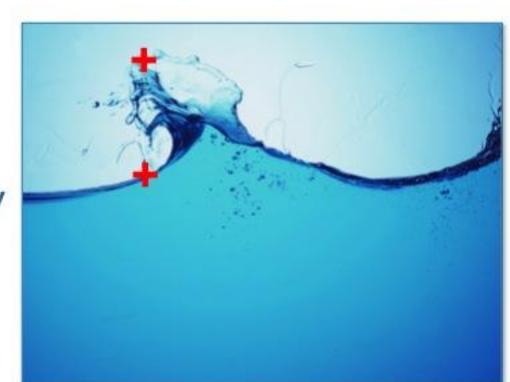
How to check the lips: transverse sweep


Midsagittal plane: bilateral cleft

Transverse sweep: bilateral cleft


3D rendering; bilateral cleft

Bilateral cleft lip/palate - 13 wks: Normal karyotype



Bilateral cleft lip/palate at 13 wks

Crisis of nuchal translucency (NT)

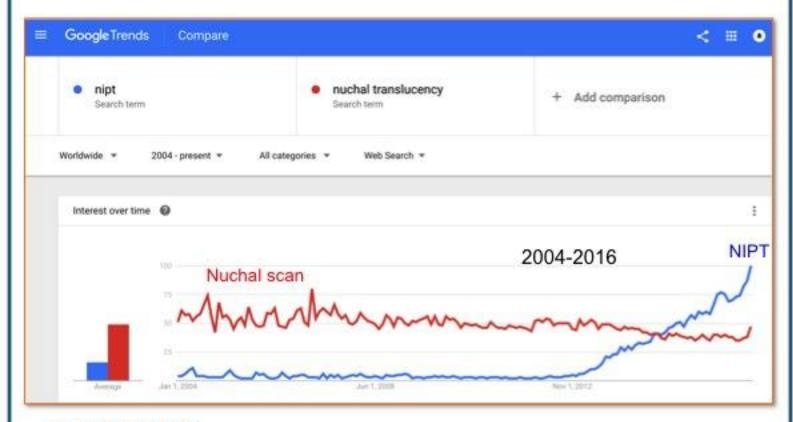
Dr Fred Ushakov

Early pregnancy anomaly scan

SEQUENOM

Improving Healthcare Through Revolutionary Genetic Analysis Solutions

From Academic Research Through Translational Applications To Clinical Diagnostics


MaterniT21[™] Test Commercial Launch

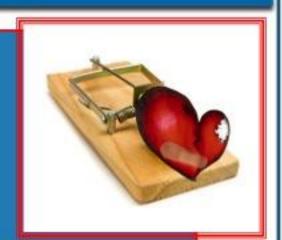
October 17, 2011

The future is the end?

Google → Nuchal scan vs NIPT

11-13 wks screening: trisomy 21 vs CHD

	Trisomy 21	CHD (severe) 8% (31% for all CHD)		
% of all anomalies	8%			
Main problem	Extra chromosome 21	Abnormal structure of the heart		
Diagnosis	Karyotype	Echocardiography		
Screening past	Structural / biochemical markers	To check the structure of the heart		
Screening future	Search for extra chromosome cfDNA = ffDNA = NIPT	To train the specialis to check the heart		
Screening base	Genotype	Phenotype		
Screening aims	TOP	To improve outcome TOP		


Down's syndrome is only 8.6% of congenital anomalies

Anomaly	Live birth (LB) / 10,000 births	LB+IUD +TOP / 10,000 births	%ТОР	% of all anomalies (LB+IUD+TOP) 100% 31% 8.3%	
All Anomalies	176.3		15%		
Congenital heart defects	55.4				
Severe CHD	16.8	17.41	15%		
 Transposition of great vessels 	3.31				
Tetralogy of Fallot	3.29		36%		
Atrioventricular septal defect	2.74				
Hypoplastic left heart	1.29				
· Coarctation of aorta	3.31				
Ventricular septal defect	26.5			14%	
Chromosomal	13.6			14%	
Down syndrome	8.82	17.88	46%	8.6%	
Edwards syndrome/trisomy 18	0.86				
Patau syndrome/trisomy 13	0.37				
Turner syndrome**	0.63				

Detection of CHD at 11-13 weeks

CHD are:

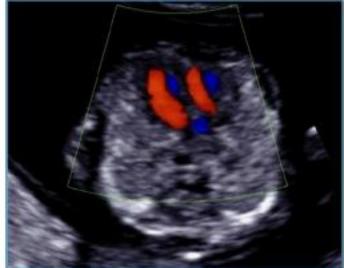
- Common
- Severe
- As a group very variable
- Associated with other anomalies
- Generally poorly detectable
- Can be detected at 11-13 weeks
- Prenatal diagnosis improves the outcome
- Training of sonographers improves detection
- Have devastating impact on the family
- Ignored by medical society

The 12 wks Cardiac Scan: transabdominal

- Heart scan is not 'taking pictures' → dynamic examination of normal pattern of cardiac anatomy
- 2. Same scanning planes as for 20-22 wks
- 3. Directional power (or color) Doppler

Congenital heart disease at 11-13 wks

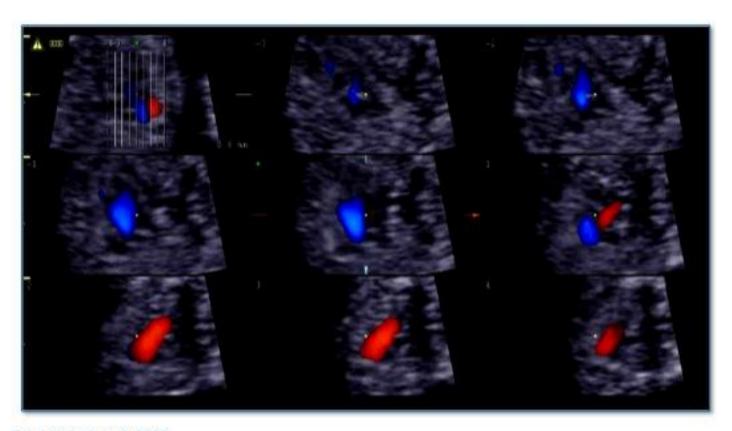
4 common & clinically important anomalies: detectable!


- 1. Transposition of the great arteries (TGA)
- 2. Tetralogy of Fallot (TOF)
- Atrioventricular septal defect (AVSD)
- 4. Hypoplastic left heart syndrome (HLHS)

Transposition of the great arteries (TGA) - 13 wks

Parallel arteries

Normal 4CV, no crossing




TGA at 12 wks → fantastic diagnosis in 5 cardiac cycles!

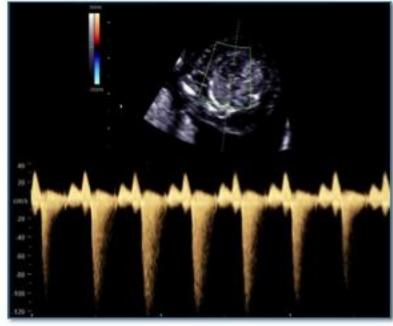
Dr Anna Knafel, Krakow, Poland

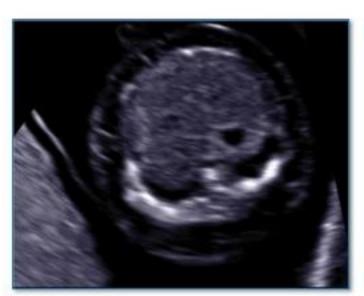
Tetralogy of Fallot (TOF) at 11wks (first in 2009!)

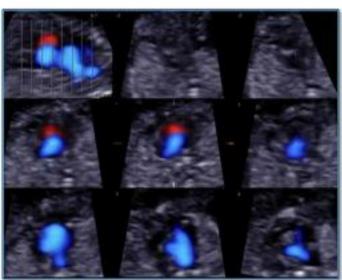
Conotruncal anomaly pattern (simplified as TOF)

Normal 4CV & single visible large overriding vessel forming aortic arch

DD: Possibilities:

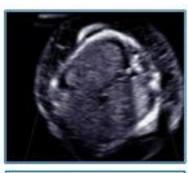

- Tetralogy of Fallot
 - ✓ PA is not visible (small)
- DORV
- Truncus arteriosus
- Pulmonary atresia


AVSD: common AV valve regurgitation



Trisomy 21

D.G. AVSD at 13 wks



Trisomy 21

Hypoplastic left heart syndrome at 12 wks

4 chamber view
1. Right ventricle big
2. Left ventricle
small

Left outflow tract

1. Aortic atresia

Right outflow tract

1. Big pulmonary
artery

Ductus arteriosus
 Transverse aorta

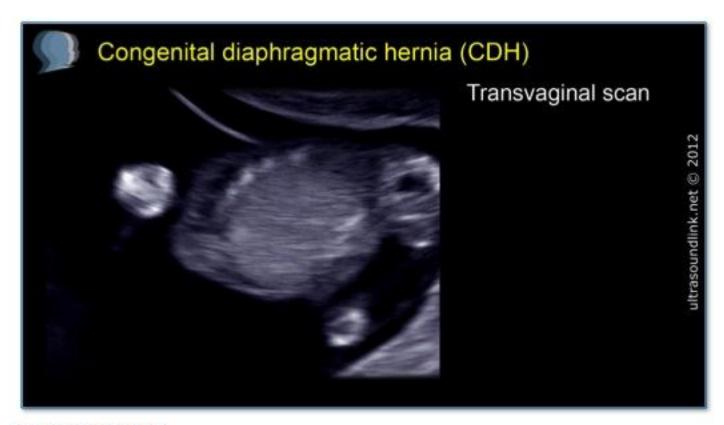
Arterial arches

Retrograde flow in aorta

fetalechocardiodraphy.com

London School of Ultrasound

Early Fetal
Echocardiography at
11-13 weeks


11th November 2017

Congenital diaphragmatic hernia (CDH) at 12 wks (TAS)

Fred Ushakov © 2017

CDH at 11+6 wks

Anterior wall defects: D/D at 11-13 wks

- Physiological bowel herniation
- Omphalocele (exomphalos)
 - ✓ Pentalogy of Cantrell
 - upper mid-line omphalocele, anterior diaphragmatic hernia, sternal cleft, pericardial defect and intracardiac defects
- Ruptured omphalocele(!??)
- Gastroschisis
- Body-stalk anomaly (BSA)
- Limb-body wall complex (LBWC)
- Amniotic band syndrome
- Bladder or cloacal extrophy
- Ectopia Cordis

Anterior abdominal wall defects: D/D

Defect	Herniated viscera	Herniation site	Umbilical cord	Amniotic membrane	Celomic space	Fetal mobility	Spine	
Exomphalos	Liver, bowel	Base of umbilical cord	Free- floating	Continuous, fused with chorion	Obliterated	Normal	Normal/ Kyphoscolio sis	
Gastroschisis	Bowel	Amniotic cavity	Free- floating	Continuous, fused with chorion	Obliterated	Normal	Normal	
Pentalogy of Cantrell	Heart, liver, bowel	Amniotic cavity	Free- floating	Continuous, fused with chorion	Obliterated	Normal	Normal	(3)
Cloacal extrophy/OEIS complex	Cloaca	Amniotic cavity	Free- floating	Continuous, fused with chorion	Obliterated	Normal	Normal/ Kyphoscolio sis	
Body stalk anomaly	Liver, bowel	Celomic cavity	Absent	Interrupted at the level of herniated abdominal organs	Contains abdominal organs	Stuck through abdominal- placental attachment	Kyphoscolio sis	0
Abdominoschi sis with amniotic bands	Liver, bowel	Amniotic cavity	Free- floating	Ruptured	Obliterated	Normal	Normal	

Body-stalk anomaly (BSA) at 12 wks

Body-stalk anomaly: extraamniotic viscera

Fred Ushakov @ 2017

Body-stalk anomaly

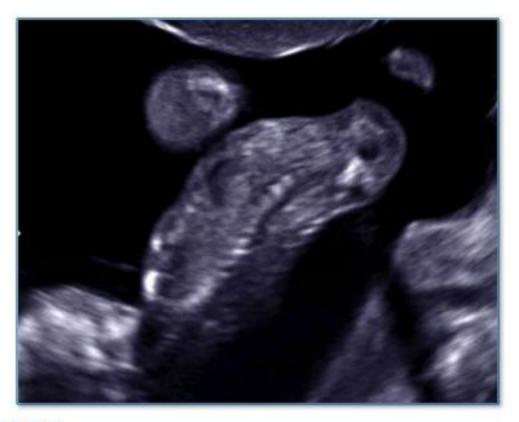
(?) Type of defect at 12 wks

Gastroschisis

D/D???

(?) Gastroschisis

D/D


Gastroschisis

Omphalocele

Omphalocele (exomphalos) with liver

Exomphalos with liver at 12 wks

TAS before CVS

Exomphalos: liver + bowel

Suspicious great arteries

Omphalocele with or without liver at 12 wks (?)

Exomphalos: liver or bowel?

Omphalocele bowel only

Omphalocele – 13 wk

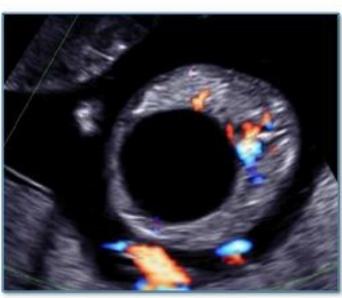
Different omphalocele

Exomphalos with liver at 13 wks; normal PCR

Small narrow chest

1/3 will die from pulmonary complications

Megacystis at 12 wks



Spontaneous resolution

IUD after CVS

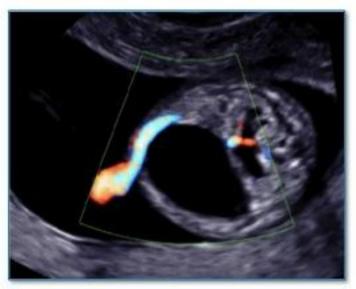
Massive megacystis: follow-up for low urinary tract obstruction (LUTO)

?Keyhole sign

Two umbilical arteries

Megacystis (?) at 13 wks → To perform TVS!!!

TAS

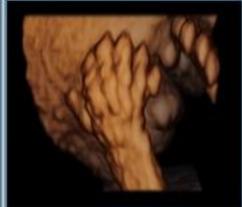

Horseshoe kidney + hydronephrosis at 13 wks

Fred Ushakov @ 2017

Development of oligohydramnios at 16 wks

Single umbilical artery at 13 wks

Horseshoe kidney at 16 wks


Arms/hands defects in chromosomal anomalies

Aneuploidy	Typical defects
Trisomy 21	Normal hands
Trisomy 18	Radial aplasia, poor visible/overlapping fingers
Trisomy 13	Postaxial polydactyly
45X0	Normal hands
Triploidy	Syndactyly

Polydactyly → easier to detect in 1st than in 2nd trimester

3D rendering is very useful

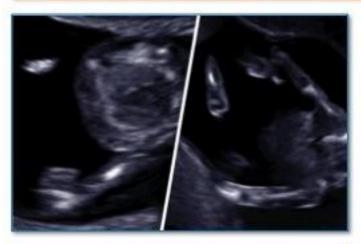
Polydactyly → easier to detect in 1st than in 2nd trimester

Main question: isolated or not?

30-40 genetically well known syndromes with postaxial polydactyly

- Trisomy 13
- · Ciliopathies:
 - ✓ Meckel-Gruber
 - ✓ Ellis Van Creveld
 - ✓ Short-rib polydactyly
 - ✓ Bardet-Biedl
 - ✓ McKusick-Kaufman
- · Smith-Lemli-Opits ,ets

Overlapping/poor visible fingers



Radial aplasia

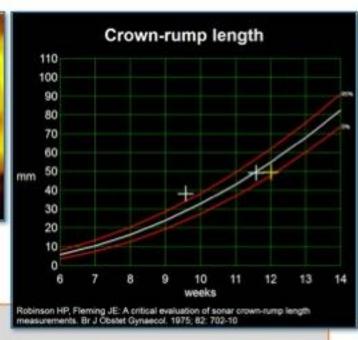
- Usually part of aneuploidy, syndrome or association
- · Isolated unilateral radial lesions have good prognosis

Trisomy 18 & TAR syndrome

(!) Amniotic bands

12(14) weeks fetus

Not possible to measure CRL


TAS

TVS

Early 11-13 wks FGR → (?) Diagnosis

Possible triploidy:

- Early pregnancy anomaly scan
- Levels of PAPP-A & hCG
- CVS (karyotype!, not microarrays)

Take home message

Early pregnancy anomaly scan (EPAS): 11-13 wk

- Examination of anatomy at 11-13 wks is essential part of the scan
- Majority of severe anomalies are detectable
- TAS & TVS are adjunctive approaches providing different information
 - ✓ TAS better for heart & screening
 - ✓ TVS for brain & expert examination
- TVS is essential for CRL < 55 mm